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ABSTRACT

This work considers the problem of super–resolution. The goal
is to resolve a Dirac distribution from knowledge of its discrete,
low–pass, Fourier measurements. Classically, such problems have
been dealt with parameter estimation methods. Recently, it has
been shown that convex–optimization based formulations facilitate
a continuous time solution to the super–resolution problem. Here
we treat super–resolution from low–pass measurements in Phase
Space. The Phase Space transformation parametrically generalizes
a number of well known unitary mappings such as the Fractional
Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our
work provides a general super–resolution strategy which is back-
ward compatible with the usual Fourier domain result. We consider
low–pass measurements of Dirac distributions in Phase Space and
show that the super–resolution problem can be cast as Total Vari-
ation minimization. Remarkably, even though are setting is quite
general, the bounds on the minimum separation distance of Dirac
distributions is comparable to existing methods.

Index Terms— Fractional Fourier, low–pass, phase space, spike
train, super–resolution, total variation.

1. INTRODUCTION

Ernst Abbe’s foundational work [1] in 1873 reported an observation
regarding lack of resolvability of optical features beyond the diffrac-
tion limit. This problem is central to several areas of science and
engineering such as optics [2, 3], imaging [4], geophysics [5], depth
sensing [6] and astronomy [7].

In its abstract form, the problem can be stated as follows: How
can we recover a K–sparse signal (spike train/Dirac impulses) with
unknown locations and amplitudes from the knowledge of its low–
pass measurements in the Fourier domain? The problem is challeng-
ing because it asks for recovery of a non–bandlimited signal from
its projection onto the subspace of bandlimited functions. Two pre-
dominant approaches exist in the literature to super–resolution: op-
timization and parameter estimation based solutions.

■ Optimization Based Super–Resolution: Early roots of ℓ1 norm
based optimization can be traced back to [8]. This approach has
been revitalized due to the advent of compressed sensing [9]. A
very recent idea in this context is that of continuous sparse modeling
where the signal attributes are estimated on a continuously defined
grid [10,11] (instead of its discrete counterpart, as is the case for the
usual compressive sensing setup).

Bredies and Pikkarainen [12] present an optimization method in
the space of signed measures. In their setting, they consider discrete
measurements while the solution space is infinite dimensional. In
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Table 1: Exact Recovery Condition for Super–Resolution.

parallel, de Castro and Gamboa [13] and Candès and Fernandez-
Granda [11] consider a Total Variation (TV) formulation for super–
resolution.

■ Parameter Estimation Based Super–Resolution: The super–
resolution problem has been studied in the signal processing context
with the goal of resolving overlapping echoes/time–delay estima-
tion [17], multi–path characterization [6] and deconvolution. Li and
Speed [18] considered super–resolution in form of parametric de-
convolution of spike trains. Vetterli, Blu and co–workers [19, 20]
developed the idea of super–resolution as a sparse sampling prob-
lem. Eldar and co–workers developed super–resolution methods in
the context of sub–Nyquist sampling and the Xampling framework
[22]. Finally, since the super–resolution problem is closely linked

with the spectral estimation problem [18], MUSIC, ESPIRIT and
matrix pencil [23, 24] based methods have also been used.

In contrast to parameter estimation techniques where the re-
covery condition is based on the number of spikes, non–parametric
methods provide a bound in the form of a minimum separation
condition. More precisely, let K be the number of spikes to be
super–resolved, fc be the cut–off frequency in Fourier domain and
let ∆∆∆ denote the minimum spacing between any two spikes. While
parameter estimation methods require fc ≥ 2K + 1 assuming that
K is known a priori, non–parametric methods super–resolve the
spikes provided that fc > fSR (∆∆∆) where fSR is some function.
The works of Donoho [14], Kahane [15], Candès and Fernandez-
Granda [11] and Moitra [16] provide a theoretical guarantee for
the super–resolution problem in terms of fSR. We summarize the
recovery guarantees in terms of fSR in Table 1.

The Fourier transform is well suited for examining signals which
are linear combinations of sinusoids. In many practical applications
such as radar, sonar, holography, wave–physics and quantum optics,
the basic building blocks of the signals are not sinusoidal. Often
polynomial phase, Fourier–like transformations of form eȷϕ(t) are
well suited for analysis of such signals. For this purpose, tools such
the Fresnel transform [25], Fractional Fourier transform [26] and the
Chirp transform [27, 28] have been developed in the literature.

Our goal here is to extend existing super–resolution results to in-
tegral transformations other than the Fourier transform. To this end,
we cast the super–resolution problem in phase domain which para-
metrically generalizes some of the well–known unitary transforma-
tions. Some examples are listed in Table 2. We show that exact re-
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covery of spike trains from low–pass measurements in phase space is
possible by minimizing the signal’s TV–norm. This is accomplished
using a convex program. Remarkably, even with the general con-
struct of the problem, our theoretical guarantee for exact recovery is
the same as in [11].

Throughout the paper, R,C and Z denote sets of real, complex
and integers. We use z∗ to denote the complex conjugate of z ∈ C,
ℜz = 1

2
(z + z∗) is the real part of z and ȷ =

√
−1. Discrete

sequences are represented by s [m] ,m ∈ Z while their continuous
counterparts are represented by s (t) , t ∈ R. The L2 inner prod-
uct between functions f and g is denoted by ⟨f, g⟩ =

∫
fg∗dt.

Function composition is denoted by (f ◦ g) (x) = f (g (x)). Con-
volution between functions f and g is defined as (f ∗ g) (t) =∫
f (z) g (t− z) dz. We use s to represent the row–vector of a

discrete sequence s [m] ,m ∈ [0, . . . ,M − 1]. We use bold capitals
to represent matrices, for example D and D† is the pseudo–inverse
of D. Calligraphic letters such as L are used to denote operators.
Sets are denoted by capitalized roman font, S. The estimate of
function/sequence µ is represented by µ̃.

2. PHASE SPACE REPRESENTATION OF SIGNALS

The term Phase Space naturally arises in areas of optics [29]
and mathematical physics [30]. The Fractional Fourier trans-
form (FrFT) [26, 31–33] and the Linear Canonical Transform
(LCT) [29, 34, 35] are instantiations of phase space transforma-
tions. These transformations have found a number of applications in
signal processing [26] and communication problems such as shift–
invariant sampling/approximation theory [31, 35], operator theory,
multi–carrier communications [33], array processing [32] and op-
tical signal processing [29]. In this paper, we will work with the
Linear Canonical Transform (LCT) [30].

Definition 1 (LCT) Let Λ =
[
a b
c d

]
, with ad− bc = 1. The LCT of

a function f (t) , t ∈ R is a parametric, unitary, integral mapping,
LΛ : f → f̂ with respect to the time–frequency kernel kΛ,

f̂ (ω) = LΛ [f ] (ω)︸ ︷︷ ︸
LCT

def
=

{
⟨f, kΛ (·, ω)⟩ b ̸= 0,√
de−ȷ 1

2
cdω2

f (dω) b = 0,
(1)

where the transformation kernel is defined by

kΛ (t, ω) =
1√

−ȷ2πb
exp

(
−ȷ

1

2b

(
at2 + dω2 − 2ωt

))
. (2)

Now since b = 0 amounts to dilating the function
√
de−ȷ 1

2
cdω2

f (dω)
(see (1)), we will develop our results for the case when b ̸= 0.

The LCT satisfies a useful operator composition property: LΛ1◦
LΛ2 = LΛ3 with Λ3 = Λ2Λ1. This can be used to show that,

f (t) = LΛ−1 [ f̂ ] (t)︸ ︷︷ ︸
Inverse–LCT

def
=

{⟨
f̂ , kΛ−1 (t, ·)

⟩
b ̸= 0

√
ae−ȷ 1

2
cat2f (at) b = 0.

(3)

The LCT parametrizes a number of well–known, unitary trans-
formations, some of which are listed in Table 2. For Λ =

[
0 1
−1 0

]
=

ΛFT, the LCT amounts to the Fourier transform (upto a constant).
(FT). Similarly, with the 2× 2 rotation matrix Λθ (see Table 2), we
obtain the Fractional Fourier transform (FrFT). Matrix factorization
shows that the LCT is related to the FT and the FrFT. The Fourier

Table 2: Parametric Representation of Unitary Transformations

Parameter Matrix (Λ) Corresponding Transform[
cos θ sin θ

− sin θ cos θ

]
= Λθ Fractional Fourier Transform[

0 1
−1 0

]
= ΛFT Fourier Transform (FT)[

0 ȷ
ȷ 0

]
= ΛLT Laplace Transform (LT)[

ȷ cos θ ȷ sin θ
ȷ sin θ −ȷ cos θ

]
Fractional Laplace Transform[

1 b
0 1

]
Fresnel Transform[

1 ȷb
ȷ 1

]
Bilateral Laplace Transform[

1 −ȷb
0 1

]
, b ≥ 0 Gauss–Weierstrass Transform

1√
2

[
0 e−ȷπ/2

−e−ȷπ/2 1

]
Bargmann Transform

matrix factorization is simple:[
a b
c d

]
=

[
b 0
d b−1

]
ΛFT

[
1 0

a/b 1

]
⇔ Λ = M1ΛFTM2,

and leads to the implementation LΛ = LM1 ◦ LΛFT ◦ LM2 . The
Fractional Fourier matrix factorization is more involved. Relying on
the Iwasawa Decomposition [36],[

a b
c d

]
= Λθ

[
Γ 0
0 Γ−1

] [
1 u
0 1

]
⇔ Λ = ΛθDU,

where D is a diagonal matrix with Γ =
√
a2 + c2 and U is an

upper–triangular matrix with u = (ab+ cd) /Γ2.
A useful operation that is linked with phase space is the con-

volution/filtering operator. For the Fourier domain, we have the
convolution–multiplication property: (f ∗ g) =LΛ−1 [LΛ [f ]LΛ [g]] ,
with Λ = ΛFT. Unfortunately, this property is not preserved in
phase space. To circumvent this problem, we use a version of the
FrFT convolution operator [31].

Definition 2 (LCT Convolution/Filtering) Let ∗Λ denote the con-
volution/filtering operation in LCT domain and ∗ be the usual
Fourier domain convolution operator. Convolution of functions f
and g in the LCT domain is defined by

(f∗Λg) (t) =
e−ȷ at2

2b

√
ȷ2πb

(
f (t) e+ȷ at2

2b ∗ g (t) e+ȷ at2

2b

)
︸ ︷︷ ︸

Convolution of Modulated Functions

. (4)

By following the steps in [31], it is easy to verify that the operation
in (4) admits a convolution–multiplication property:

LΛ [f∗Λg] (ω) = e−ȷ dω2

2b f̂ (ω) ĝ (ω) . (5)

3. SPARSE SIGNALS IN PHASE SPACE

Consider a K–sparse object/spike train modeled by,

s (t) =
∑K−1

k=0
ckδ (t− tk) , t ∈ R (6)

where δ denotes the Dirac mass with weights {ck}k ∈ C that is ac-
tivated on locations {tk} ∈ [0, τ) , k = 0, . . . ,K − 1. Since we are
dealing with a finite length signal s that lives on the interval [0, τ),
we investigate its representation in phase space using the Fractional
Fourier series [37] analog of the LCT.
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Definition 3 (Linear Canonical Series) Let f be a compactly sup-
ported function such that f ̸= 0, ∀t ∈ [0, τ) and zero elsewhere and
let κb,τ =

√
2πb/τ , b ̸= 0. The Linear Canonical Series (LCS)

expansion of the function f is given by

f (t) = κb,τ

n=+∞∑
n=−∞

f̂ [n] kΛ (t, nω0b), ω0 =
2π

τ
. (7)

The LCS coefficients f̂ are evaluated at ω = nω0b, n ∈ Z,

f̂ [n] = κb,τLΛ [f ] (nω0b) ≡ κb,τ ⟨f, kΛ (, nω0b)⟩. (8)

Note that by appropriately parameterizing Λ, one can easily design
the basis functions for any of the transformations listed in Table 2.
For example, with Λ = ΛFT in (8), we obtain the Fourier Series
expansion of f .

We now compute the series coefficients for the sparse signal
s (t) in (6). We use (8), to compute the LCS coefficients

ŝ [n] = κb,τLΛ [f ] (nω0b)
(8)
= κb,τ

∫
τ

s (t) k∗
Λ (t, nω0b) dt

= κb,τ

∑K−1

k=0
ckk

∗
Λ (tk, nω0b). (9)

Plugging the coefficients into the LCS representation (7), we obtain
the phase space representation of s (t)

s (t)
(7)
= κb,τ

m=+∞∑
m=−∞

ŝ [m] kΛ (t,mω0b), ω0 =
2π

τ

=
e−ȷ at2

2b

τ

m=+∞∑
m=−∞

(
K−1∑
k=0

cke
ȷ a
2b

t2ke−ȷmω0tk

)
︸ ︷︷ ︸

ŷ[m]

eȷmω0t (10)

=
e−ȷ at2

2b

τ

m=+∞∑
m=−∞

ŷ [m] eȷmω0t. (11)

From [11], we see that ŷ [m] are precisely the Fourier series coef-

ficients of τs (t) eȷ
at2

2b . Thus, even though we are dealing with the
phase space, the linear frequency modulated, sparse signal s is com-
pletely characterized by its Fourier series coefficients ŷ.

4. SUPER–RESOLUTION IN PHASE SPACE

4.1. Problem Formulation

Let sinc (t) = sin(πt)
πt

. Consider the frequency modulated function,

ϕLP (t) = (Ω/b) e−ȷ at2

2b sinc ((Ω/b) t) . (12)

Note that this function is (Ωπ)–bandlimited because in phase space
the function ϕLP (t) is compactly supported, or,

ϕ̂LP (ω) = LΛ[ϕLP] (ω) =
e+ȷ dω2

2b

√
ȷ2πb

Π
( ω

2πΩ

)
where Π(ω) = 1, |ω| ⩽ 1/2 and zero, elsewhere.

With s defined in (11), its low–pass version is,

h (t) = (s∗ΛϕLP) (t)︸ ︷︷ ︸
Low–Pass Filtering

(4)
=

e−ȷ at2

2b

√
ȷ2πb

1

τ

∑
|m|⩽⌊Ωτ/2b⌋

ŷ [m] eȷω0mt,

(13)
where ⌊·⌋ is the floor operation.

Suppose we observe N discrete, low–pass measurements sam-
pled with sampling rate T = b/Ω,

h [n] = h (t)|t=nT , T = b/Ω, n = 0, . . . , N − 1. (14)

By modulating h, we obtain measurements of the form,

y [n] =
√

ȷ2πbτe+ȷ
a(nT )2

2b h [n]︸ ︷︷ ︸
Modulated Measurements

=
∑

|m|⩽fc

ŷ [m] eȷω0m(nT ) (15)

where fc = ⌊Ωτ/2b⌋. In vector–matrix notation, we have low–pass
measurements, y = VIDFTŷ, where VIDFT ∈ CN×(2fc−1) is the
usual inverse–DFT matrix with elements [VIDFT]n,m = eȷmω0(nT )

and we assume that N ⩾ 2fc − 1 so that VIDFT is a full–rank marix.
Having obtained ŷ, the question then is: how many samples

of ŷ are sufficient for complete characterization of ŷ [m]
(10)
=∑K−1

k=0

(
cke

+ȷ a
2b

t2k

)
e−ȷmω0tk? Indeed, from spectral estimation

theory [23], we know that we need at least 2K + 1 values of ŷ to
solve for {ck, tk}k. Consequently, whenever

fc =
⌊
Ωτ
2b

⌋
⩾ K ⇔

⌊
τ
2T

⌋
⩾ K, (16)

the system of equations is complete in ŷ meaning that we have at
least 2K + 1 values of ŷ and we can solve for {ck, tk}. Thus (16)
provides a bound on the minimum sampling density in phase space.

4.2. Super–Resolution Via Convex Programming

Given N measurements y, we obtain ŷ using ŷ = V†
IDFTy (15).

From the phase space development of the problem, we know that

ŷ [m]
(10)
=
∑K−1

k=0

(
cke

+ȷ a
2b

t2k

)
e−ȷmω0tk (17)

=

∫ τ

0

µ (t) e−ȷmω0tdt, |m| ⩽ fc = ⌊Ωτ/2b⌋

where
µ (t) =

∑K−1

k=0
cke

+ȷ a
2b

t2k︸ ︷︷ ︸
ρk

δ (t− tk) (18)

and ρk
def
= cke

+ȷ a
2b

t2k are the new weights for s (t).
We are now left to solve the standard super–resolution problem

[11] where one has access to the low–pass measurements ŷ [m] and
the signal to be super–resolved is prescribed in (18). Hence, the
problem of recovering µ from ŷ can now be solved by using,

min
µ̃

∥µ̃∥TV subject to
{
ŷ [m]

(17)
=

∫ τ

0

µ̃ (t) e−ȷmω0tdt

}
|m|⩽fc

Super–Resolution in Phase Space (Primal Problem)

(19)

where, for the model assumed in (18), the TV–norm amounts to,

∥µ∥TV =
∑

k |ρk|
(18)
=
∑

k |ck|. We note that in principle ∥µ̃∥TV =
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∥s∥TV, however, due to the nature of phase space measurements, the
real/complex weights {ck}k need to be demodulated using the linear
frequency modulation term e+ȷ a

2b
t2k which depends on Λ.

The problem in (19) seeks to recover the infinite–dimensional
variable µ̂ from finitely many constraints set up in (17). This con-
tinuous optimization problem has a tractable dual problem. As was
shown in [11], a semidefinite program (SDP) can be used to recover
µ̃ by computing {tk}k first and then recovering {ck}k using a least
squares fit. The SDP equivalent [11] of the convex dual of (19) is,

max
u,M

ℜ⟨ŷ,u⟩ subject to,[
M u
u∗ 1

]
≻≻≻ 0,

∑
j∈S2,m∈S1

[M]m,m+j = δj

Semidefinite Program (Dual Problem)

where S1 = [1, 2fc + 1− j], S2 = [0, 2fc], M ∈ C(2fc+1)×(2fc+1)

is some Hermitian matrix and u ∈ C2fc+1 is a complex vector.
The SDP input ŷ results in a vector u. In order to recover the

locations {tk}k, we construct the polynomial of degree N0 = 4fc,

pN0 (z) = 1−
∑

|k|≤2fc
ukz

k, z ∈ C. (20)

The roots of p4fc (z) , z = eȷω0t lead to the locations {tk}k. Know-
ing ŷ together with the estimates, {t̃k}k, we use the constraints in
(17) to set up a system of equations which leads to amplitude esti-
mates c̃k = ρ̃ke

−ȷ a
2b

t̃2k . (see (18)). Finally, we recover our super–
resolved signal, s̃ (t) =

∑K−1
k=0 c̃kδ

(
t− t̃k

)
. Stepwise procedure

for super–resolution in phase space is outlined in Algorithm 1.
In view of [11], let us invoke the definition of minimum dis-

tance ∆∆∆ = inf{tk}k:tk ̸=tl |tk − tl|. With fc = ⌊Ωτ/2b⌋ , the exact
recovery requirement for phase space is as follows:

Theorem 1 (Exact Recovery in Phase Space) Let the support set
of s (t) in (6) be S =

{
t̃k
}
k

. If the minimum distance obeys the
bound ∆∆∆(S) fc ⩾ 2, then s (t) is a unique solution to (19).

The proof of this theorem is a straight–forward consequence of [11].
Moreover, due to inherent Fourier structure of the phase space prob-
lem, our work may benefit from the ideas discussed in [13,14,16,24].

4.3. Remarks and Discussion

■ Backward Compatibility With the choice of parameter matrix
Λ = ΛFT (cf. Table 2), our result coincides with the usual, Fourier
domain case of super–resolution [11, 13]. Furthermore, Λ = Λθ

relates to the case of Fractional Fourier domain for which our result
generalizes a previous known result [38].
■ Exact Recovery Condition Even though our super–resolution
naturally extends to a number of well known unitary transforma-
tions, the exact recovery condition remains unchanged. Hence re-
formulating the super–resolution problem in context of phase space
comes at no extra cost in the sense of recovery requirement.

4.4. An Application of Super–Resolution in Phase Space

Bandlimted signals are compactly supported in the Fourier domain.
When a bandlimited signal is corrupted by additive impulsive noise
or AIN, the holes/zeros in the spectrum are filled by the spectral
components that characterize the impulsive noise which is essen-
tially non–bandlimited. Wolf [39] used the idea of curve–fitting the

Algorithm 1: Super–Resolution in Phase Space.

Input: Low-pass samples h [n]
(13)
= (s ∗Λ ϕLP) (nT )

Modulate Samples h [n] →
√

ȷ2πb |τ |e+ȷ
a(nT )2

2b h [n] = y [n]

Data: ŷ = V†
IDFTy, ŷ ∈ C2fc+1

Solve SDP : max
u,M

ℜ⟨ŷ,u⟩ subject to
[

M u
u∗ 1

]
≻ 0

Construct Polynomial: pN0 (z) = 1−
∑

|k|⩽2fc
ukz

k

Support: pN0

(
eȷω0t

)
= 0 →

{
t̃k
}
k

Weights: min
ρ̃k

∣∣∣ŷ [m]−
∑K−1

k=0 ρ̃ke
−ȷω0 t̃k

∣∣∣2 → {ρ̃k}k

Output: s̃ (t) =
∑K−1

k=0 c̃kδ
(
t− t̃k

)
, {c̃k = ρ̃ke

−ȷ a
2b

t̃2k}k

out–of–band components for identification of impulsive noise com-
ponents. Here, we formulate the problem of denoising linear fre-
quency modulated (LFM) signals that are corrupted by AIN. Since
LFM signals are the basis functions of phase space transformations,
it is clear that such signals are bandlimited in the LCT domain.

Consider a bandlimited LFM signal

rBL (t) = κb,τ

∑
|m|≤M

r̂BL [m] kΛ (t,mω0b),

with r̂BL [m] = 0, |m| > M and let r (t) = rBL (t) + s (t) be the
signal corrupted by AIN. Clearly, r (t) is non–bandlimited in phase
space due to s (t). Suppose we observe low–pass filtered samples of
r (t), that is,

(r∗ΛϕLP) (nT )︸ ︷︷ ︸
h[n]

= e−ȷ
a(nT )2

2b

∑
|m|⩽fc

(c1ŷ1 [m] + c2ŷ2 [m])︸ ︷︷ ︸
ŷr [m]

eȷω0mnT

where c1, c2 are known constants, ŷ1 [m] = r̂BL [m] e−ȷ
d(mω0b)2

2b

and ŷ2 [m] = ŷ [m] (as in (17)) where fc = ⌊Ωτ/2b⌋ ≡ ⌊τ/2T ⌋.

Again, let us define y [n] = h [n] eȷ
a(nT )2

2b , n = 0, . . . , N −1, N ≥
2fc + 1. Provided that fc ≥ M + 2K + 1, we have,

ŷr [m] =

{
c1ŷ1 [m] + c2ŷ2 [m] |m| ≤ M

c2ŷ2 [m] |m| > M
,

which leads to complete characterization of s (t) since the 2K + 1
values of ŷ2 [m] can be used with (19) to solve for s (t). With ŷ =
ŷr , m > M we can use Algorithm 1 for exact denoising of r (t).

5. CONCLUSION

We develop a method for super–resolution in phase space. The phase
space transformation generalizes a number of well known transforms
(see Table 2). More precisely, we are concerned with recovery of
spike trains from their low–pass samples. For this purpose, we filter
the spike train with a kernel which is bandlimited in phase space. We
show that even though we are dealing with a general class of para-
metric transformations, the low–pass samples are completely char-
acterized by chirp–modulated Fourier series. Having made this link,
we show that the recovery of spikes from their low–rate measure-
ments can be cast as a total–variation minimization—a problem that
can be tackled by convex programming. In closing, our work extends
the recent results of [11] without altering the exact recovery condi-
tion. That said, the cut–off frequency is a function of the transform
being used for investigation. Our work warrants future research, spe-
cially for the case of additive noise.
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